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STRESS ANALYSIS OF CONCRETE AND REINFORCED-CONCRETE

SLAB STRUCTURES UNDER A HIGH-VELOCITY IMPACT

UDC 539.3N. N. Belov, N. T. Yugov,

D. G. Kopanitsa, and A. A. Yugov

A mathematical model is developed, which describes the behavior of reinforced concrete under high-
velocity impact and explosion conditions within the framework of mechanics of continuous media.
The problem of a model projectile penetrating into a layered target consisting of two concrete slabs
separated by a sand layer and blasting of an explosive charge encased in the embedded projectile is
solved in the three-dimensional formulation by the finite-element method. The effect of reinforcement
on penetration and failure of reinforced-concrete slabs is studied by means of mathematical simula-
tions.
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In designing protective structures of underground installations, it is necessary to estimate their resistance
to high-rate dynamic loads. This problem can effectively be solved by mathematical simulation of deformation and
failure of these structures subjected to an impact or explosion.

The problem of the impact interaction between cylindrical metal impactors and concrete targets was solved
in [1, 2]. To study concrete failure, a phenomenological approach was applied, where the strength criteria are
expressed in terms of invariant relations between the critical values of macrocharacteristics of the process: stresses
and strains. A comparison of mathematical simulations with the results of a special experiment showed that this
approach to the failure problem, used to solve static problems, can also be used to analyze concrete failure under
dynamic loads.

A mathematical model was developed in [3, 4] to analyze the behavior of sandy soil under shock-wave loading.
The processes of penetration of cylindrical and star-shaped impactors into a sandy half-space were studied by the
method of computer modeling. The effect of the impactor shape on the penetration depth was revealed [4]. The
problem of cylindrical impactors penetrating into structures composed of sandy soil and concrete was solved in a
three-dimensional formulation [3].

Much attention has been given to mathematical simulation of collisions of solid bodies with various monolithic
and layered targets made of metal, ceramics, and composite materials (see, e.g., [5–8]). However, calculating the
penetration of solids into reinforced-concrete slabs is still an open question. Results of experimental and theoretical
studies on the impact interaction of cylindrical bodies with ogival head parts with concrete and reinforced-concrete
slabs within the impact-velocity range of 100–650 m/sec and the impact-angle range of 0–40◦ (the angle is counted
from the normal to the target surface) can be found in [9]. In the experiments performed, the impactor diameter was
smaller than the characteristic size of the reinforcing grid cell. The experimental studies show that reinforcement
of a concrete target improves its bearing capacity by preventing the global failure but has little influence on the
character of local failure. It follows from the experimental and theoretical results that concrete reinforcement
affects the penetration of solids into typical reinforced-concrete targets only slightly. The present paper considers a
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calculation method for predicting the strength of a structure composed of concrete, reinforced-concrete, and sandy-
soil layers upon penetration and initiation of impactors containing explosive charges at various penetration depths.
The impactor diameter can exceed the characteristic size of the reinforcing grid cell.

1. Mathematical Model. A mathematical model that allows one to describe the behavior of deformable
solids under high-velocity impact and explosion conditions is proposed in [6]. The cleavage failure of ductile materials
is considered as the process of growth and coalescence of voids in a plastically deformed material under tensile
stresses. In this approach, the limiting value of the relative volume of voids is used as the local strength criterion
of a material. The limiting value of the plastic-deformation work is used as the local criterion of shear rupture.

To solve the problem of the impact interaction of a metal impactor of an arbitrary shape with reinforced-
concrete slabs, we use the model of a porous elastoplastic body [6].

We represent the volume of the porous medium v as the sum of the specific volume of the matrix vm and
the specific volume of pores vp. The material porosity is characterized by the relative volume of pores ξ or by the
parameter α = v/vm related by α = 1/(1− ξ).

The motion of a porous elastoplastic medium is described by the following system of equations, which
comprises the laws of conservation of mass, momentum, and energy:

d

dt

∫
V

ρ dV = 0,
d

dt

∫
V

ρu dV =
∫
s

n · σ dS,
d

dt

∫
V

ρE dV =
∫
s

n · σ · n dS;

e = sj/(2µ) + λs, s : s = (2/3)σ2
T ; (1.1)

p =
ρm0

α

[c2
m0(1− γm0η/2)

(1− qm0η)2
η + γm0ε

]
. (1.2)

Here t is the time, V is the domain of integration, S is the surface area of the latter, ρ is the material density,
n is the vector normal to the surface, σ = −pg + s is the stress tensor, s is the stress-tensor deviator, p is
the pressure, g is the metric tensor, u is the velocity vector, E = ε + u · u/2 is the total specific energy, ε is
the specific internal energy, e = d − (d : g)g/3 is the deviator of the strain-rate tensor, d = (∇u + ∇ut)/2 is
the strain-rate tensor, sj = ṡ + s · ω − ω · s is the derivative of the stress deviator in the Jaumann–Noll sense,
µ = µm0(1−ξ)[1−ξ(6ρm0c

2
m0 +12µm0)/(9ρm0c

2
m0 +8µm0)] and σT are the effective shear modulus and yield stress,

respectively, ω = (∇ut−∇u)/2 is the vortex tensor, qm0, ρm0, and cm0 are the material constants, η = 1−ρm0v/α,
and γm0 is the Grüneisen coefficient of the matrix material. The parameter λ is eliminated using the yield criterion.

To close system (1.1), (1.2), the equation governing the variation of the parameter α under extension is taken
in the form [6]

dα

dt
= − (α0 − 1)2/3

η1
(α− 1)1/3∆p. (1.3)

It is used for ∆p = p + (as/α) ln (α/(α− 1)) < 0.
Compaction and collapse of pores under compression after preliminary loosening is described by Eq. (1.3)

provided that

∆p = p− 2σs

3α
ln

α

α− 1
> 0.

Otherwise, dα/dt = 0. The following notation is introduced: α0 is the initial porosity of the material and η1 and
as are the material constants.

For metals, we obtain σT = σs/α, where σs is the yield stress of the matrix material. For α = α0 = 1.0003
and λ = 0, system (1.1)–(1.3) describes deformation of the matrix material according to the model of an elastic
solid.

Concrete under dynamic loading up to its failure is described by the model of a linearly elastic solid with
physicomechanical properties of concrete. After failure, this becomes an isotropically hardened elastoplastic solid
with physicomechanical properties of a granular medium. The shear-strain resistance of this medium is much lower
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Fig. 1. Schematic diagram of reinforced concrete: 1) concrete; 2) con-
crete layer with a reinforcing grid.

than that of concrete before failure, and this medium cannot withstand tensile stresses. For failed concrete, the
yield stress depends on pressure and is given by the formula

σT = σmin +
(σmax − σmin)k1p

(σmax − σmin) + k1p
,

where k1 = 0.82, σmin = 0.0077 GPa, and σmax = 0.0216 GPa.
We use the strength criterion proposed for concrete in [10], namely,

3I2 = [AI1 + B]{1− (1− C)[1− (I3/2)(I2/3)−3/2]}, (1.4)

where I1 and I2 and I3 are the first invariant of the stress tensor and the second and third invariants of the stress
deviator, respectively, A = Rc − Rp, B = RcRp, and C = 3T 2

c /(RcRp), where Rc, Rp, and Tc are the ultimate
strengths under uniaxial compression, tension, and pure shear.

The numerical values of A, B, and C are determined in terms of the compressive, tensile, and shear strengths
of concrete, respectively, obtained under dynamic loading [10]. Figure 1 shows a schematic diagram of a reinforced-
concrete slab. In calculating reinforced-concrete slabs, the layer of concrete with reinforcement is modeled by an
elastoplastic medium that is a homogeneous two-phase mixture of steel and concrete with the initial density ρs0

determined as

ρs0 = ν1ρ10 + ν2ρ20,

where ν1, ν2, ρ10, and ρ20 are the initial volume concentrations and densities of steel and concrete (ν1 + ν2 = 1).
The volume concentrations are expressed via the areas occupied by steel and concrete in the cross section

normal to the reinforcing bar

ν1 = πd1n/(4L), ν2 = 1− ν1,

where L is the length, n is the number of bars within a segment of length L, and d1 is the bar diameter.
The equation of state of reinforced concrete (mixture) has the form

p = ρs0c
2
0η(1− γsη/2)/(1− qη)2 + γsρs0ε, η = 1− ρs0v/α,

where v is the specific volume of the mixture, γs is the Grüneisen coefficient, and vs0 = 1/ρs0.
The coefficients c0 and q in the linear equation D = c0 + qu that relates the shock-wave velocity D in the

mixture to the mass velocity u are determined via the shock adiabats of the mixture components:

Di = ci0 + qiui (i = 1, 2).

In the variables (v, p), the shock adiabat of the mixture has the form

v(p) =
2∑

i=1

mi

{
vi0 −

1
p

[ci0

qi

√
p

ρi0c2
i0

+
1
4
− 1

2

]2}
,
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TABLE 1

ρm0, g/cm3 cm0, cm/µsec qm0 γ0 γH n Aρn−1
H /D2

H

1.67 0.27 1.86 0.2 0.87 0.249 0.1173

where mi = νiρi0/ρs0 are the mass concentrations of steel (i = 1) and concrete (i = 2) in the reinforced-concrete
layer (m1 + m2 = 1).

Using the shock-wave relations for the mixture

D = vs0

√
p/(vs0 − v(p)), u =

√
p(vs0 − v(p)),

we can construct a relation between the shock-wave velocity and the mass velocity and determine the coefficients c0

and q.
The velocity of sound c0 is calculated by the formula

1
c0

=
2∑

i=1

vi

ci0
.

The Grüneisen coefficient γs for the mixture is expressed in terms of the Grüneisen coefficients of the
components γi0:

vs0

γs
=

2∑
i=1

miv0i

γi0
.

The shear modulus µ and the yield stress σT of the mixture are given by

µ = 1/(v1/µ01 + v2/µ02), σT = m1σs1 + m2σs2,

where µ0i and σsi (i = 1, 2) are the shear moduli and the yield stresses of the components of the mixture, respectively.
In contrast to concrete, which experiences brittle failure, the homogeneous two-phase mixture of steel and concrete
fails like a ductile material. As was mentioned above, the limiting value of the relative volume of voids ξ∗ is used
as the local criterion of cleavage failure in this approach. The local criterion of shear failure is the criterion based
on the limiting value of the plastic-deformation work Ap∗. It is assumed that the element of the material fails if
Ap = Ap∗. Cracks appear in the element and grow under the action of tensile stresses. The failed material behaves
like a granular medium that sustains compressive and shear stresses but has no tensile strength [3, 4, 11].

Provided that

p >
y0

αk

[( α

α− 1

)2k/(3−2k)

− 1
]
,

the compression of a granular medium is described by the equation

c2
m0ρm0(1− 0.5γm0η)η

(1− qm0η)2
+ γm0ρm0ε−

y0

k

[( α

α− 1

)2k/(3−2k)

− 1
]

= 0.

Under unloading, a granular material cannot sustain tensile stresses; hence, the porosity increases with p = 0.
The porosity of the material is determined from the equation

c2
m0(1− 0.5γm0η)η/(1− qm0η)2 + γm0ε = 0.

The coefficients of adhesion y0 and internal friction k are determined by comparing theoretical and experimental
shock adiabats [11].

The behavior of the solid high explosive (HE) under an impact is described by the model of an elastoplastic
solid with the use of the hydrodynamic equation of state of the form (1.2). It is assumed that detonation occurs
instantaneously in the entire volume. To calculate the expansion of the explosion products of solid high explosives,
we use the empirical equation of state [12]

p = Aρn + γρε,

where γ = γ0 + cρ, c = (γH − γ0)/ρH , and ρH is the density of the explosion products at the Chapman–Jouguet
point. The numerical values of the parameters of the equation of state of a 50/50 TNT/RDX HE and its explosion
products are listed in Table 1.
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Fig. 2. Layered target hit by a cylindrical steel impactor with a velocity of 800 m/sec and an impact
angle of 20◦ for t = 92 (a) and 198 µsec (b).

2. Calculation Results. Using the model proposed above and the numerical method of [13], we solved
the problem of penetration of a cylindrical steel impactor with a diameter d0 = 7.6 mm and elongation 4d0 into a
target consisting of two layers of fine-grain concrete separated by a layer of dry sand. The thickness of each layer
was 2.98d0. The initial velocity of the impactor was 800 m/sec and the impact angle was 20◦. Figure 2 shows the
cross sections of isometrical projections of the impactor and target configurations at the times of 92 and 198 µsec.

An analysis of the calculation results shows that the impactor penetrates through the first concrete layer by
the time of 48 µsec. At this moment, the impactor velocity is 512 m/sec. The impactor passes through the sand
layer at 92 µsec. At this moment, its velocity is 425 m/sec. Subsequent penetration of the impactor into the third
layer of concrete is accompanied by its pronounced failure. By the time of 118 µsec, fragmentation of concrete
at the rear surface of the target and separation of the first fragments are observed. At 198 µsec, along with fine
fragments, a large piece of concrete separates from the target and moves downward. When the impactor leaves the
rear surface of the target, its velocity is 235 m/sec.

The results of a numerical analysis of interaction of an impactor of similar geometry containing an HE charge
and the above-mentioned target under the same impact conditions are described below. Figure 3 shows the cross
sections of isometrical projections of the impactor and target at the times of 168 and 170 µsec. The dark region in
the impactor indicates the domain occupied by the HE. An analysis of numerical results shows that the first layer
of concrete is punched by 50 µsec. At this moment, the impactor velocity is 459 m/sec. By 104 µsec, the impactor
passes the sand layer, and its velocity decreases to 363 m/sec.

Since the impactor is actually a steel shell filled by an HE, the deformation of its head part is more pro-
nounced, as compared to the previous case. In addition, the impactor is bent, which was not observed in the
previous calculation case.

HE detonation occurs at the moment of 168 µsec, when the impactor velocity is 191 m/sec. The maximum
pressure of HE detonation products is 26 GPa.

At the time of 170 µsec, the HE decomposition products expand and the steel shell of the impactor is
bulged. After that, the fragments of the failed shell interact with the products of the HE reaction with the target
materials (sand and concrete). Figure 4 shows the failure pattern of the layered target at the time of 180 µsec. The
impactor and products of HE decomposition are not shown. One can see a catastrophic failure of the target, which
is expected to become even more pronounced with time because the maximum pressure of detonation products
reaches approximately 5 GPa by this moment.

To study the effect of reinforcement of a concrete slab, we compare the failure patterns of a slab with
reinforced layers and a monolithic slab hit by a steel impactor with a velocity of 300 m/sec. The impactor is a
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Fig. 3. Penetration of a model projectile into a layered target at a velocity of 800 m/sec and an
impact angle of 20◦ for t = 168 (a) and 170 µsec (b).

Fig. 4. Failure pattern of a layered target at the moment
the numerical calculation is completed.

steel cylinder whose height h is equal to its diameter d0 (h = d0 = 300 mm). The height of the concrete and
reinforced-concrete slabs is H0 = 2d0.

The slab is reinforced by two A-III class reinforcement grids with a cell size of 120×120 mm and bars 32 mm
in diameter. The grids are symmetrical about the mid-surface of the slab with a 30 mm protective layer. Figure 5
shows the failure patterns of concrete and reinforced-concrete slabs obtained at the moment the calculations were
completed. The velocities and penetration depths H/d0 of the impactor in the reinforced-concrete and concrete slabs
are compared in Table 2 at different times. By 1.8 msec, the impactor in the reinforced-concrete slab passes through
the first reinforced layer and penetrates into concrete at a depth H = 1.16d0. At this moment, the penetration
velocity of the impactor is 141 m/sec. The slab is subjected to compressive stresses (0.05 GPa < p < 0.19 GPa). As
a result of cleavage failure, concrete spalling occurs at the rear surface of the target. By this moment, cleavage failure
also begins in the concrete slab, where compressive stresses are almost 1.5 times higher than those in reinforced
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Fig. 5. Failure pattern of a concrete slab (a) and a concrete slab reinforced by a steel grid (b) under
a 300 m/sec impact.

TABLE 2

Time of the
process
t, msec

Reinforced-concrete slab Time of the
process
t, msec

Concrete slab

H/d0 u, m/sec H/d0 u, m/sec

0.2 0.17 246 0.2 0,17 254
0.5 0.39 214 0.5 0.42 240
1.8 1.16 141 1.8 1.25 151
3.5 1.84 89 3.5 1.98 119
4.5 2.14 85 4.3 2.3 116
5.2 2.34 84 — — —

concrete (0.1 GPa < p < 0.26 GPa). The maximum stresses are reached in the zone where the impactor contacts the
target. The relative depth and velocity of penetration into the concrete slab are H/d0 = 1.25 and u = 151 m/sec,
respectively. The concrete-slab penetration is practically finalized by 3.5 msec. The calculations were completed
at 4.3 msec. At the moment the concrete slab is punched, a crater shaped like a structure of two truncated cones
with the common base 1.9d0 (Fig. 5a) is formed in the slab. The diameters of the upper and lower bases are 2.2d0

and 2.1d0, respectively. Beyond the target, the impactor velocity is 116 m/sec.
By 3.5 msec, the impactor reaches the second reinforced layer in the reinforced-concrete slab. The penetration

velocity decreases to 89 m/sec. Penetration through the second reinforced layer and, hence, the target is completed
by 4.5 msec. The calculations were performed until 5.2 msec. Figure 5b shows the pattern of deformation and
failure of the reinforced-concrete slab. The reinforced layers of concrete are represented as dark regions.

Beyond the target, the impactor velocity is 85 m/sec. As a result of cleavage failure of the reinforced-concrete
slab, complete concrete spalling occurs above the first reinforced layer. Through holes of diameter 1.2d0 are formed
in both the first and second reinforced layers. Concrete spalling of diameter 3d0 occurs on the rear side. The hole
in the concrete resembles a figure consisting of a cylinder of diameter 1.2d0 and height 0.9d0 and a truncated cone
whose upper base is the lower base of the cylinder. The lower-base diameter of the truncated cone is 2.2d0.

In summary, an analysis of the interactions considered above shows that reinforcement of a concrete slab
leads to a 26.7-% decrease in the impactor velocity beyond the target.

This work was supported by the Russian Foundation for Basic Research (Grant No. 04-01-00856).
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